Down-regulation of ZIP4 by RNA interference inhibits pancreatic cancer growth and increases the survival of nude mice with pancreatic cancer xenografts.
نویسندگان
چکیده
PURPOSE Zinc levels have been correlated with cancer risk, although the role of zinc and zinc transporters in cancer progression is largely unknown. We recently found that a zinc transporter, ZIP4, is overexpressed in pancreatic cancer. In this study, we further deciphered the role that ZIP4 plays in a pancreatic cancer mouse model by silencing ZIP4. EXPERIMENTAL DESIGN ZIP4 stable silencing was established in pancreatic cancer cell lines ASPC-1 (ASPC-shZIP4) and BxPC-3 (BxPC-shZIP4) by short hairpin RNA using retrovirus vectors. The stable cells were characterized in vitro and in vivo using a nude mouse xenograft model. RESULTS Silencing of ZIP4 was associated with decreased cell proliferation, migration, and invasion. Both ASPC-shZIP4 and BxPC-shZIP4 cells showed a significant reduction in tumor volume and weight in the s.c. model, and decreased primary tumor weight in the orthotopic model compared with the vector control cells (ASPC-shV and BxPC-shV). Silencing of ZIP4 also caused reduced incidence of tumor metastasis in the mice and downsized the tumor grade. More importantly, silencing of ZIP4 significantly increased the survival rate of nude mice with orthotopic xenografts (P = 0.005). All ASPC-shZIP4-injected mice (100%) remained alive up to 32 days after tumor implantation, whereas only 30% of the ASPC-shV mice were alive at the same time point. CyclinD1 expression was decreased in the ASPC-shZIP4 xenografts. CONCLUSIONS These results identify a previously uncharacterized role of ZIP4 in pancreatic cancer progression, and indicate that knocking down ZIP4 by short hairpin RNA might be a novel treatment strategy for pancreatic cancers with ZIP4 overexpression.
منابع مشابه
Human Cancer Biology Down-regulation of ZIP4 by RNA Interference Inhibits Pancreatic Cancer Growth and Increases the Survival of Nude Mice with Pancreatic Cancer Xenografts
Purpose: Zinc levels have been correlated with cancer risk, although the role of zinc and zinc transporters in cancer progression is largely unknown. We recently found that a zinc transporter, ZIP4, is overexpressed in pancreatic cancer. In this study, we further deciphered the role that ZIP4 plays in a pancreatic cancer mouse model by silencing ZIP4. Experimental Design: ZIP4 stable silencing ...
متن کاملAberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression.
Zinc is an essential trace element and catalytic/structural component used by many metalloenzymes and transcription factors. Recent studies indicate a possible correlation of zinc levels with the cancer risk; however, the exact role of zinc and zinc transporters in cancer progression is unknown. We have observed that a zinc transporter, ZIP4 (SLC39A4), was substantially overexpressed in 16 of 1...
متن کاملThe WSB1 Gene Is Involved in Pancreatic Cancer Progression
BACKGROUND Pancreatic cancer cells generate metastases because they can survive the stress imposed by the new environment of the host tissue. To mimic this process, pancreatic cancer cells which are not stressed in standard culture conditions are injected into nude mice. Because they develop xenografts, they should have developed adequate stress response. Characterizing that response might prov...
متن کاملZIP4 regulates pancreatic cancer cell growth by activating IL-6/STAT3 pathway through zinc finger transcription factor CREB.
PURPOSE Recent studies indicate a strong correlation of zinc transporter ZIP4 and pancreatic cancer progression; however, the underlying mechanisms are unclear. We have recently found that ZIP4 is overexpressed in pancreatic cancer. In this study, we investigated the signaling pathway through which ZIP4 regulates pancreatic cancer growth. EXPERIMENTAL DESIGN The expression of cyclin D1, inter...
متن کاملRNA Binding Protein CUGBP2/CELF2 Mediates Curcumin-Induced Mitotic Catastrophe of Pancreatic Cancer Cells
BACKGROUND Curcumin inhibits the growth of pancreatic cancer tumor xenografts in nude mice; however, the mechanism of action is not well understood. It is becoming increasingly clear that RNA binding proteins regulate posttranscriptional gene expression and play a critical role in RNA stability and translation. Here, we have determined that curcumin modulates the expression of RNA binding prote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 15 19 شماره
صفحات -
تاریخ انتشار 2009